**Ernazar Abdikamalov, Sarah Gossan, Alexandra DeMaio, and Christian D. Ott**

Phys. Rev. D, 90, 044001 (2014)

### Abstract

The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Our simulations include a microphysical finite-temperature EOS, an approximate electron capture treatment during collapse, and a neutrino leakage scheme for the postbounce evolution. We find that the precise distribution of angular momentum is relevant only for very rapidly rotating cores with T/|W|>~8% at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out additional simulations to generate trial waveforms for injection into simulated advanced LIGO noise at a fiducial galactic distance of 10 kpc. Using matched filtering, we show that for an optimally-oriented source and Gaussian noise, advanced Advanced LIGO could measure the total angular momentum to within ~20%, for rapidly rotating cores. For most waveforms, the nearest known degree of precollapse differential rotation is correctly inferred by both our matched filtering analysis and an alternative Bayesian model selection approach. We test our results for robustness against systematic uncertainties by injecting waveforms from simulations using a different EOS and and variations in the electron fraction in the inner core. The results of these tests show that these uncertainties significantly reduce the accuracy with which the total angular momentum and its precollapse distribution can be inferred from observations. |

#### Gravitational Waveforms

We provide gravitational waveforms h+ for an equatorial observer (in the source frame). The waveforms are rescaled by distance D and have units of cm. See the paper for details on extraction methods and discussions of the models. Please contact the authors should you have any questions.

Download waveforms from the base catalog (40 MB).

Download waveforms that were injected for our analysis and are not part of the base catalog (11 MB).