
An Example Implementation of a 1D Lagrangian Hydrodynamics Code

The “blcode” – Bruenn’s Lagrangian Code

An implementation by Christian D. Ott, Viktoriya Morozova, and Tony Piro (all TAPIR,
Caltech) based on Mezzacappa & Bruenn 1993, ApJ 405, 669, [1]

July 24, 2014

Abstract

We present an example implementation of the Mezzacappa & Bruenn 1993, ApJ 405, 669, [1],
spherically-symmetric (1D) Lagrangian hydrodynamics scheme that employs artificial viscos-
ity for shock capturing. We follow the original manuscript closely and deviate only in de-
tails. This is not a state-of-the art numerical approach to the 1D Lagrangian hydrodynamics
problem, but it can serve as a good learning example for researchers interested in studying
hydrodynamic phenomena. We call this code blcode.

The blcode is released as open source and is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

1 Basic Equations Solved and Implementation Details

blcode solves the equations of Langrangian hydrodynamics (e.g., [2]). In the following, the mass
coordinate m is the mass enclosed by radius r.

Mass conservation:
∂r
∂m

=
1

4πr2ρ
. (1)

Momentum conservation:
Dv
Dt

= −Gm
r2 − 4πr2 ∂P

∂m
, (2)

where Dv/Dt is the Lagrangian time derivative at constant mass.

Energy conservation:
Dε

Dt
= −P

D
Dt

(
1
ρ

)
, (3)

which is just a reformulation of the first law of thermodynamics. ε is the specific internal energy
(energy per mass) of a mass element.

1.1 Basic Conventions and Grid Setup

The grid is divided into imax computational cells. Quantities with subscript i live at the inner edge
of computaitonal cell i. Quantities with subscript i + 1/2 live at the center (in mass coordinate) of
cell i. blcode presently assumes uniform spacing in mass (see grid.F90). This is unlikely to be
optimal for many situations and the user should modify the gridding according to their needs.

1

• The mass coordinate mi is the mass enclosed by the inner boundary of cell i. In the code, this
is variable mass(i).

• The mass point m1 = 0 corresponds to the origin, r = 0, but often m1 is set to some large
mass, for example the mass enclosed inside a piston or inside a thermal bomb location.

• The mass contained in each cell is

∆mi+1/2 = mi+1 −mi , (4)

for i = 1, 2, ..., imax− 1.

• The mass enclosed by the center of each zone is given by

mi+1/2 = mi +
1
2

∆mi+1/2 , (5)

for 1, 2, ..., imax− 1. And the mass difference between two consecutive cell centers is given
by

∆mi = mi+1/2 −mi−1/2 =
1
2
(∆mi−1/2 + ∆mi+1/2) , (6)

for i = 2, 3, ..., imax and we set ∆mimax+1/2 = ∆mimax−1/2.

1.2 Finite-Difference Form of the Equations

The guts of blcode are in hydro.F90. In the following, we present the evolved equations in finite-
difference form in the order of the update sequence.

The velocity is kept at half timesteps (n + 1/2, indicated as a superscript) from all other vari-
ables. This is a way of making the evolution second-order accurate in time (see, e.g., [3]). The
velocity at the inner edge of cell i at time n + 1/2 is given by

vn+1/2
i = vn−1/2

i − ∆tv
Gmi

(rn
i)

2 − ∆tv4π(rn
i)

2 Pn
i+1/2 − Pn

i−1/2

∆mi

−∆tv4π
(rn

i+1/2)
2Qn−1/2

i+1/2 − (rn
i−1/2)

2Qn−1/2
i−1/2

∆mi
, (7)

where vn−1/2
i is the old velocity and the second and third terms correspond to the right-hand-side

of Eq. 2. The fourth term is due to the artificial viscosity, which is needed to stabilize the numerical
evolution at discontinuities (= shocks). This is the von Neumann-Richtmyer approach to handling
numerical hydrodynamics (e.g., [3, 4]). The artificial viscosity should be zero wherever the flow
is smooth and non-zero where there are discontinuous changes in the state variables to damp
numerical noise that will arise there. The detailed form of Q is given in §1.3 and in the momentum
equation (Eq. 7) it is time-lagged for additional stability. The velocity update in Eq. 7 is spatially
centered, thus is second-order also in space.

The timestep for the velocity update ∆tv is given as the average of the previous and the current
timestep,

∆tv ≡
1
2
(∆tn−1/2 + ∆tn+1/2) , (8)

2

where
∆tn+1/2 ≡ tn+1 − tn . (9)

We elaborate in §1.4 on how we chose ∆tn+1/2.

Once the new velocity at n + 1/2 is known, the radial coordinates are updated according to

rn+1
i = rn

i + ∆tn+1/2vn+1/2
i . (10)

Because the cell center is defined to contain half the mass in a cell, the discrete radial coordinate
at time n + 1 is computed via a volume average (assuming that the density is constant across a
zone):

rn+1
i+1/2 =

[
(rn+1

i)3 + (rn+1
i+1)

3

2

]1/3

. (11)

Next, we use the updated radial coordinates to update the cell densities,

ρn+1
i+1/2 =

∆mi+1/2
4
3 π[(rn+1

i+1)
3 − (rn+1

i)3]
. (12)

Note that the finite difference representation of the density equation is spatially centered and,
hence, has a second-order truncation error in ∆m.

Finally, we must update the specific internal energy. The finite-difference representation of the
energy equation Eq. 3 is

ε?i+1/2 = εn
i+1/2 −

1
2
(P?

i+1/2 + Pn
i+1/2)

(
1

ρn+1
i+1/2

− 1
ρn

i+1/2

)

−4π∆t(
1
2
[rn+1

i+1/2 + rn
i+1/2])

2Qn+1/2
i+1/2

vn+1/2
i+1 − vn+1/2

i

∆mi+1/2
. (13)

In the above, the first term is the old specific internal energy, the second term is the PdV work,
and the third term arises from the artificial viscosity (at timestep n). The new pressure Pn+1

i+1/2 will
generally be a function of the new internal energy εn+1

i+1/2. Hence, both quantities are marked with
a star in Eq. 13 and the equation must be iterated to convergence.

blcode has two ways of handling this. For equations of state that do not explicitely include
temperature, that is, P = P(ρ, ε), e.g., the common gamma-law P = (Γ− 1)ρε, one just loops over
Eq. 13 and updates the pressure P?

i+1/2 until (|ε?,j+1
i+1/2 − ε

?,j
i+1/2|)/|ε

?,j
i+1/2|, where j is the iteration

number, is smaller than some tolerance EPSTOL set in hydro.F90. This way of updating the specific
internal energy is chosen by setting energy update = ’’epsilon’’ in parameters.

The second way of updating the specific internal energy, energy update = ’’temperature’’,
is for normal stellar equations of state for which P = P(ρ, T, {Xl}) (where {Xl} is the set of vari-
ables specifying the composition of the gas). In this case, first an intermediate temperature T?

i+1/2
must be found to obtain the intermediate pressure P?

i+1/2. In blcode, this is all formulated as a
univariate root finding problem and solved via Newton-Raphson iteration.

The reader may recall that the root-finding problem in one variable is to find xr for which
f (xr) = 0. In Newton-Raphson, we expand f about its root xr to first order,

f (xr) = f (x) + (xr − x) f ′(x) = 0 . (14)

3

Now we interpret f (xr) as the trial value for the true root at the n-th step of an iterative procedure.
The n + 1-th step is then

f (xn+1) = f (xn) + (xn+1 − xn)︸ ︷︷ ︸
δx

f ′(xn) ≈ 0 , (15)

and, thus,

xn+1 = xn + δx = xn −
f (xn)

f ′(xn)
. (16)

The iteration is stop when f (xn+1) = 0 or when the fractional change from between iteration n
and n + 1 is smaller than some small number.

In blcode, we set

f (T?
i+1/2) = ε?i+1/2 − εn

i+1/2

+
1
2
(P?

i+1/2 + Pn
i+1/2)

(
1

ρn+1
i+1/2

− 1
ρn

i+1/2

)

+4π∆t(
1
2
[rn+1

i+1/2 + rn
i+1/2])

2Qn+1/2
i+1/2

vn+1/2
i+1 − vn+1/2

i

∆mi+1
. (17)

f ′(T?
i+1/2) is then given by

f ′(T?
i+1/2) =

(
∂ε

∂T

)?

i+1/2
+

1
2

(
∂P
∂T

)?

i+1/2

(
1

ρn+1
i+1/2

− 1
ρn

i+1/2

)
. (18)

The derivatives of ε and P with respect to T are obtained from the equation of state.

1.3 Artificial Viscosity

The Euler equations admit weak solutions, i.e. solutions for which the integral form of the con-
servation laws hold, but the differential form is violated, because of discontinuities in the state
variables. As a consequence, a naive finite-difference treatment of the Euler equations will lead
to the growth and eventual blow-up of oscillations near discontinuities (e.g., shocks, contact dis-
continuities, surfaces of stars etc.). The idea of von Neumann & Richtmyer [4] is to avoid such
oscillations by artificially spreading out discontinuities over multiple grid cells and thus avoiding
the development of unstable oscillations. The artificial viscosity used for this should be non-zero
only at discontinuities and zero everywhere else.

Mezzacappa & Bruenn [1] use an artificial viscosity prescription optimized for collapse. How-
ever, in blcode, we use the simpler original von Neumann & Richtmyer form,

Q ≡
{

c2
0ρ(∂v/∂k)2 ∂v/∂k < 0

0 otherwise ,
(19)

where ∂./∂k denotes the deriviate with respect to an integer Lagrangian coordinate (some cell
index k). The finite-difference form of this implemented in artificial viscosity.F90 is

Qn+1/2
i+1/2 =

{
c2

0ρn+1
i+1/2(v

n+1/2
i+1 − vn+1/2

i)2 if (vn+1/2
i+1 − vn+1/2

i) < 0
0 otherwise .

(20)

We set c2
0 = 2, following [1, 5].

4

1.4 Timestep

The timestep used in the update of the hydrodynamic equations must not violate causality, that
is, it must be no larger than the time it takes a sound wave to travel across a grid cell. In addition
to the causality constraint, the timestep may further need to be limited to ensure stability of the
numerical implementation (see, e.g., [2–4]).

In blcode, the timestep is determined in timestep.F90 according to the following prescription.
We first compute a local timestep for each cell i,

∆tn+1/2
i+1/2 = min

(
rn

i+1 − rn
i

|vn−1/2
i + cn

s,i+1/2|
,

rn
i+1 − rn

i

|vn−1/2
i − cn

s,i+1/2|

)
, (21)

where cs is the speed of sound obtained from the EOS. We then use the global minimum as the
new timestep,

∆tn+1/2 = CFL min({tn+1/2
i }) , (22)

where CFL is the Courant-Friedrichs-Lewy factor, which we set to 0.95 for stability.

1.5 Boundary Conditions

We must specify boundary conditions for coordinates and some hydrodynamics/thermodynamic
state variables at both the inner and the outer boundaries of our grid. The default boundary
conditions in blcode are the following. The user should feel free to experiment and change them
according to their need.

Inner Boundary, i=1 (quantities not specified are computed and not fixed)

Quantity Description/Notes Source File
m1 = 0 Mass interior to inner zone; set to m1 = Minterior problem.F90

for piston or thermal-bomb explosions.
r1 = 0 Inner radius, in explosion case set read profile.F90

to location of inner mass boundary and hydro.F90

v1 = 0 Set to vpiston only when piston active. hydro.F90

Outer Boundary, i=imax (quantities not specified are computed and not fixed)

Quantity Description/Notes Source File
Qimax = 0 Artificial viscosity artificial viscosity.F90

ρimax+1/2 = ρimax+1/2−1 Density hydro.F90

εimax+1/2 = εimax−1 Spec. int. energy. hydro.F90

Timax+1/2 = Timax−1 Temperature hydro.F90

Pimax+1/2 = 0 Pressure. Set to zero. hydro.F90

Note that Pimax and Qimax are the only important boundary conditions, since the other quantities
at imax are never used in the evolution.

2 Basic Control and Setup of Problems

2.1 parameters file

Much of what blcode will do can be controlled via settings read in by input parser.F90 from a
text file called parameters in the code’s main directory. There are various parameters that steer

5

when the code will do output (their rather trivial meaning can be inferred from blcode.F90 and
output.F90).

The parameter imax sets the number of grid cells to be used in the simulation.

The parameter energy update controls if the energy equation is updated via an iteration over
temperature (’’temperature’’; as in [1]) or via an iteration over specific internal energy alone
(’’epsilon’’). The latter is needed for equations of state that do not explicitely include a temper-
ature (e.g., a gamma-law, P = (Γ− 1)ρε).

Of particular importance is the parameter initial data that will determine, which branch of
problem.F90 is executed and what problem blcode will solve (see §2.2).

Parameter profile name sets the name of the profile that is read in by read profile.F90 and
mapped to blcode’s grid. blcode uses the familiar .short format whose details can be inferred
from read profile.F90. This profile just contains the basic hydrodynamics and thermodynam-
ics of the star. Parameters ncomps and comp profile name set the number of isotopes tracked
and the name of the isotope profile file, respectively. The isotope profile is read and mapped by
read profile.F90 from which the detailed contents of the isotope profile file can be inferred.

The equation of state (EOS) to be used is specified by parameter eoskey. See §3.

2.2 problem.f90

problem.F90 is a central routine of the code, since it controls the problem solved, including EOS
(see §3) and grid parameters.

Currently, blcode is set up for thermal bomb (initial data = ’’Thermal Bomb’’) and piston-
driven (initial data = ’’Piston Explosion’’) explosions.

3 Equations of State

An equation of state (EOS) is crucial for closing the system of hydrodynamics equations. blcode
implements a number of equations of state. Not all will work for all applications.

EOS parameters may vary from problem to problem. Hence, they are set in problem.F90. The
top-level EOS routine is eos.F90, from which lower-level routines for the various EOS are called.
Basic EOS information is also provided in the comment section at the top of file eos.F90. The EOS
implementation currently present in the code is rather inefficient and could be optimized easily.

The EOS is selected with the eoskey variable that is set in the parameters file.

• eoskey = 1 Hybrid Polytropic/Gamma-Law EOS: useful for simple stellar collapse prob-
lems, see Janka et al. 1993, http://adsabs.harvard.edu/abs/1993A%26A...268..360J. This
equation of state does not define temperature and requires the parameter setting
energy update = ’’epsilon’’.

• eoskey = 2 Polytropic EOS: P = KρΓ. This EOS does not define temperature and requires
the parameter setting energy update = ’’epsilon’’.

• eoskey = 3 Ideal single-particle Boltzmann Gas EOS

6

http://adsabs.harvard.edu/abs/1993A%26A...268..360J

• eoskey = 4 Helmholtz EOS: ideal gases of ions, photons, electrons, and positrons. Based
on Timmes & Swesty 2000, http://adsabs.harvard.edu/abs/2000ApJS..126..501T.

• eoskey = 5 Gamma-Law EOS: P = (Γ − 1)ρε. This equation of state does not define
temperature and requires the parameter setting energy update = ’’epsilon’’.

• eoskey = 6 Paczynski EOS: Simplified EOS for a mixture of ions, photons, and semi-
degenerate/semi-relativistic electrons. Based on Paczynski 1983, http://adsabs.harvard.
edu/abs/1983ApJ...267..315P. Note that the speed of sound for this EOS is currently de-
fined as c2

s = P/ρ, which is not the correct adiabatic speed of sound. It is somewhat involved
to work out the correct expression from Paczynski’s approximate expressions and we leave
this to future revisions of the code. Since the speed of sound is used only for determining
the timestep and does not enter the evolution equations, we find that our simple approxi-
mation does not distort the hydrodynamic evolution. We recommend to test the sensitivity
of simulations to changes in the Courant factor (parameter dtfac in timestep.F90).

4 Code Flow Chart

program blcode

blcode.F90

Parse Input
input parser.F90

Setup Problem
problem.F90

Allocate Variables
allocate vars.F90

Setup Mass Grid
grid.F90

Map Profile
read profile.F90

Prepare Evolution
Initial AV, ∆t, Output

blcode.F90

Time Evolution Loop
blcode.F90

Check Termination
and Output Criteria

blcode.F90

Output: output.F90

Compute Timestep
timestep.F90

Update Hydro
hydro.F90

Advance Time
blcode.F90

References

[1] A. Mezzacappa and S. W. Bruenn. A numerical method for solving the neutrino Boltzmann
equation coupled to spherically symmetric stellar core collapse. Astrophys. Journal, 405:669,
March 1993.

7

http://adsabs.harvard.edu/abs/2000ApJS..126..501T
http://adsabs.harvard.edu/abs/1983ApJ...267..315P
http://adsabs.harvard.edu/abs/1983ApJ...267..315P

[2] D. Mihalas and B. Weibel-Mihalas. Foundations of Radiation Hydrodynamics. Dover Publications,
Mineola, NY, USA, 1999.

[3] R. L. Bowers and J. R. Wilson. Numerical modeling in applied physics and astrophysics. Jones and
Bartlett, Boston, MA, USA., 1991.

[4] J. Von Neumann and R. D. Richtmyer. A Method for the Numerical Calculation of Hydrody-
namic Shocks. J. Appl. Phys., 21:232, March 1950.

[5] M. C. Bersten, O. Benvenuto, and M. Hamuy. Hydrodynamical Models of Type II Plateau
Supernovae. Astrophys. Journal, 729:61, March 2011.

8

	Basic Equations Solved and Implementation Details
	Basic Conventions and Grid Setup
	Finite-Difference Form of the Equations
	Artificial Viscosity
	Timestep
	Boundary Conditions

	Basic Control and Setup of Problems
	parameters file
	problem.f90

	Equations of State
	Code Flow Chart

